目前,荧光传感器阵列已经在环境监测中得到了广泛应用,尤其在污染物和污染源的检测方面。例如,采用复杂的第五代聚酰胺胺树枝状聚合物制作的荧光传感器阵列已成功用于抗生素的快速检测和实际样本中抗生素残留的分析[19]。然而,基于荧光传感器阵列的PFASs检测仍然处于发展初期,已有的研究多集中于通过集成多个MOF(如基于金属有机框架的荧光传感器阵列)来实现PFASs的区分[20]。这种方法的挑战在于复杂的设计和有限的灵敏度,尤其容易受到环境因素和仪器波动的影响。为了简化并提高阵列的准确性,集成比率荧光传感器阵列应运而生,它通过将多个信号通道的传感单元集成,从而有效减轻了上述挑战,这种设计还提供了内建的自校准功能,有效规避了与目标无关的干扰因素[21]。
MOFs和金属纳米簇(MNCs)因其独特的结构特性和卓越的功能性,成为制备荧光探针的理想材料。这些先进材料不仅具有较高的比表面积和可调的孔隙度,使其在各种传感应用中具有极大的潜力,而且还具备显著的电子和光学特性,能够增强探针的灵敏度和选择性[22-25]。MOFs和MNCs的结合正推动着传感平台设计的革命,为精准检测各种目标分析物提供了前沿策略。特别是一些MOF材料,如ZIF-8、MOF-5和UiO-66-NH2等,作为载体纳米材料,具有加载MNCs的能力,从而赋予MNCs更优异的荧光性能[26-28]。这些材料的协同效应为下一代传感技术的研发奠定了基础,尤其在环境监测、生物医学诊断和化学分析等领域中展示出广阔的应用前景。基于这些研究动向,我们将继续深入探索MOF支持的MNCs材料在比率荧光传感器阵列中的应用,以推动PFASs检测技术的发展。
参考文献
[1] C.M. Butt, U. Berger, R. Bossi, G.T. Tomy, Levels and trends of poly- and perfluorinated compounds in the arctic environment, Sci. Total Environ. 408(2010) 2936–2965.
[2] N. Yamashita, S. Taniyasu, G. Petrick, S. Wei, T. Gamo, P.K.S. Lam, K. Kannan,
Perfluorinated acids as novel chemical tracers of global circulation of ocean waters, Chemosphere 70 (2008) 1247–1255.
[3] I. Ross, J. McDonough, J. Miles, P. Storch, P. Thelakkat Kochunarayanan, E. Kalve, J. Hurst, S.S. Dasgupta, J. Burdick, A review of emerging technologies for remediation of PFASs, Remediation 28 (2018) 101–126.
[4] J.P. Benskin, B. Li, M.G. Ikonomou, J.R. Grace, L.Y. Li, Per- and Polyfluoroalkyl
Substances in Landfill Leachate: Patterns, Time Trends, and Sources, Environ. Sci. Technol. 46 (2012) 11532–11540.
[5] J.L. Domingo, M. Nadal, Per-and polyfluoroalkyl substances (PFASs) in food and
human dietary intake: a review of the recent scientific literature, J. Agric. Food Chem. 65 (2017) 533–543.
[6] D. Herzke, E. Olsson, S. Posner, Perfluoroalkyl and polyfluoroalkyl substances
(PFASs) in consumer products in Norway - A pilot study, Chemosphere 88 (2012)
980–987.
[7] X.C. Hu, D.Q. Andrews, A.B. Lindstrom, T.A. Bruton, L.A. Schaider, P. Grandjean, R. Lohmann, C.C. Carignan, A. Blum, S.A. Balan, C.P. Higgins, E.M. Sunderland, Detection of Poly- and Perfluoroalkyl Substances (PFASs) in U.S. Drinking Water Linked to Industrial Sites, Military Fire Training Areas, and Wastewater Treatment Plants, Environ. Sci. Technol. Lett. 3 (2016) 344–350.
[8] E. Goosey, S. Harrad, Perfluoroalkyl substances in UK indoor and outdoor air: Spatial and seasonal variation, and implications for human exposure, Environ. Int. 45 (2012) 86–90.
[9] E.I.H. Loi, L.W.Y. Yeung, S.A. Mabury, P.K.S. Lam, Detections of Commercial Fluorosurfactants in Hong Kong Marine Environment and Human Blood: A Pilot Study, Environ. Sci. Technol. 47 (2013) 4677–4685.
[10] M. Smithwick, R.J. Norstrom, S.A. Mabury, K. Solomon, T.J. Evans, I. Stirling, M. K. Taylor, D.C.G. Muir, Temporal Trends of Perfluoroalkyl Contaminants in Polar Bears (Ursus maritimus) from Two Locations in the North American Arctic, 1972–2002, Environ. Sci. Technol. 40 (2006) 1139–1143.
[11] E.M. Sunderland, X.C. Hu, C. Dassuncao, A.K. Tokranov, C.C. Wagner, J.G. Allen,
A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects, J. Exposure Sci. Environ. Epidemiol. 29 (2019) 131–147.
[12] B. Szostek, K.B. Prickett, Determination of 8:2 fluorotelomer alcohol in animal
plasma and tissues by gas chromatography-mass spectrometry, J. Chromatogr. B 813 (2004) 313–321.
[13] K.I. Van de Vijver, P. Hoff, K. Das, S. Brasseur, W. Van Dongen, E. Esmans, P. Reijnders, R. Blust, W. De Coen, Tissue distribution of perfluorinated chemicals in harbor seals (Phoca vitulina) from the Dutch Wadden Sea, Environ. Sci. Technol. 39 (2005) 6978–6984.
[14] J. Verreault, M. Houde, G.W. Gabrielsen, U. Berger, M. Hauks, R.J. Letcher, D.C. G. Muir, Perfluorinated Alkyl Substances in Plasma, Liver, Brain, and Eggs of Glaucous Gulls (Larus hyperboreus) from the Norwegian Arctic, Environ. Sci. Technol. 39 (2005) 7439–7445.
[15] X. Xiao, B.A. Ulrich, B. Chen, C.P. Higgins, Sorption of Poly- and Perfluoroalkyl Substances (PFASs) Relevant to Aqueous Film-Forming Foam (AFFF)-Impacted Groundwater by Biochars and Activated Carbon, Environ. Sci. Technol. 51 (2017) 6342–6351.
[16] N. Yamashita, K. Kannan, S. Taniyasu, Y. Horii, T. Okazawa, G. Petrick, T. Gamo, Analysis of perfluorinated acids at parts-per-quadrillion levels in seawater using liquid chromatography-tandem mass spectrometry, Environ. Sci. Technol. 38 (2004) 5522–5528.
[17] B.J. Place, J.A. Field, Identification of Novel Fluorochemicals in Aqueous Film-Forming Foams Used by the US Military, Environ. Sci. Technol. 46 (2012) 7120–7127.
[18] W. Backe, J.A. Field, Zwitterionic, cationic, and anionic fluorinated chemicals in aqueous film forming foam formulations and groundwater at US militarty bases by non-aqueous large volume injection HPLC-MS/MS, Environ. Sci. Technol. 47 (2013) 5226–5234.
[19] J.S.C. Liou, B. Szostek, C.M. Derito, E.L. Madsen, Investigating the biodegradability of perfluorooctanoic acid, Chemosphere 80 (2010) 176–183.
[20] S. Vaalgamaa, A.V. V¨ah¨atalo, N. Perkola, S. Huhtala, Photochemical reactivity of perfluorooctanoic acid (PFOA) in conditions representing surface water, Sci. Total Environ. 409 (2011) 3043–3048.
[21] X. Dauchy, Per- and polyfluoroalkyl substances (PFASs) in drinking water: Current state of the science, Curr. Opin. Environ. Sci. Health 7 (2019) 8–12.
[22] L. Ahrens, M. Bundschuh, Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: A review, Environ. Toxicol. Chem. 33 (2014) 1921–1929.
[23] J.L. Butenhoff, G.L. Kennedy Jr., S.R. Frame, J.C. O’Connor, R.G. York, The reproductive toxicology of ammonium perfluorooctanoate (APFO) in the rat, Toxicology 196 (2004) 95–116.
[24] F.M. Hekster, R.W.P.M. Laane, P. De Voogt, Environmental and Toxicity Effects of Perfluoroalkylated Substances, Rev. Environ. Contam. Toxicol. 179 (2003)
99–121.
[25] N. Kudo, Y. Kawashima, Toxicity and toxicokinetics of perfluorooctanoic acid in humans and animals, J. Toxicol. Sci. 28 (2003) 49–57.
[26] C.H. Hurst, D.J. Waxman, Activation of PPAR and PPAR by Environmental Phthalate Monoesters, Toxicol. Sci. 74 (2003) 297–308.
[27] J.M. Shipley, trans-Activation of PPAR and Induction of PPAR Target Genes by
Perfluorooctane-Based Chemicals, Toxicol. Sci. 80 (2004) 151–160.
[28] J.E. Klaunig, M.A. Babich, K.P. Baetcke, J.C. Cook, J.C. Corton, R.M. David, J. G. DeLuca, D.Y. Lai, R.H. McKee, J.M. Peters, PPARα agonist-induced rodent tumors: modes of action and human relevance, Crit. Rev. Toxicol. 33 (2003) 655–780.